Entendimento do problema

Introdução

Este documento tem como objetivo apresentar o entendimento do problema enfrentado pelo projeto **DengBuster**, desenvolvido no contexto do desafio interdisciplinar da disciplina de Projeto Integrador de Engenharia 2, da Universidade de Brasília. A proposta busca compreender, contextualizar e justificar a necessidade de uma solução tecnológica eficiente para o monitoramento e controle de insetos vetores, com foco inicial no *Aedes aegypti*, transmissor de doenças como dengue, zika e chikungunya. A análise aqui apresentada fundamenta as decisões de projeto e orienta o desenvolvimento da solução, que alia tecnologia embarcada, inteligência artificial e impacto social.

O problema

O avanço da urbanização, o descarte inadequado de resíduos e o acúmulo de água parada têm contribuído para o aumento da população de insetos vetores, especialmente o *Aedes aegypti*, cujas fêmeas são as principais responsáveis pela transmissão de arboviroses que impactam milhões de brasileiros anualmente. A dificuldade em monitorar a presença desse mosquito em tempo real e com precisão dificulta ações preventivas, sobrecarrega os sistemas de saúde e gera prejuízos econômicos e sociais.

Frente a esse desafio, foi proposto o desenvolvimento de uma armadilha inteligente e adaptável, com capacidade de atrair, identificar e capturar insetos voadores de forma seletiva. Inicialmente treinada para o *Aedes aegypti*, a solução também pode ser facilmente ajustada para monitorar outras espécies vetoras, bastando alterar os atrativos e modelos de classificação.

A armadilha é equipada com sensores ambientais, microfone e câmera, além de sistemas de ventilação controlada e fonte de energia solar. Os dados de captura e variáveis ambientais são processados por um sistema embarcado e enviados para uma interface web, permitindo o monitoramento contínuo, remoto e georreferenciado.

Mais do que um dispositivo de captura, o **DengBuster** é uma plataforma tecnológica que integra hardware e software para produzir dados relevantes à vigilância epidemiológica, estudos entomológicos e políticas públicas. A proposta alia portabilidade, autonomia energética, baixo custo e escalabilidade, sendo uma ferramenta poderosa para o enfrentamento de desafios em saúde pública e meio ambiente.

Referências bibliográficas — Patentes sobre armadilhas inteligentes para mosquitos Aedes

- 1. **US 7074830 B2.** *System for trapping flying insects using attractive baits.* Depositante: American Biophysics Corp. Concedida em 11 jul. 2006. Disponível aqui. Acesso em: 23 abr. 2025.
- 2. **US 6594946 B2.** *Apparatus for attracting and killing mosquitoes and biting insects.* Depositante: American Biophysics Corp. Concedida em 22 jul. 2003. Disponível aqui. Acesso em: 23 abr. 2025.
- 3. BR PI0203907 C1. Armadilha para mosquitos. Depositante: Fiocruz. Concedida em 19 mar. 2019. Disponível aqui. Acesso em: 23 abr. 2025.
- 4. US 2022/0046907 A1. Adaptive insect trap. Depositante: Radar USA, Inc. Publicada em 17 fev. 2022. Disponível aqui. Acesso em: 23 abr. 2025.
- 5. US 2022/0232813 A1. Insect trap and classification system. Depositante: Pestsense, Inc. Publicada em 28 jul. 2022. Disponível aqui. Acesso em: 23 abr. 2025.
- US 2022/0361471 A1. Intelligent insect trap and monitoring system. Depositante: Terralytic, Inc. Publicada em 17 nov. 2022. Disponível aqui. Acesso em: 23 abr. 2025.

Versão	Descrição	Data	Autor(es)
1.0	Criação do Documento	23/04/2025	Ian Lucca Soares Mesquita, Luis Felipe Rivera
4.0	Adeguação de contexto	18/07/2025	Miguel Moreira da Silva de Oliveira

Visão Geral do Produto

Introdução

Este documento apresenta a Visão Geral do Produto **DengBuster**, uma armadilha inteligente para a captura seletiva de insetos voadores, com foco inicial no mosquito *Aedes aegypti*. Aqui estão reunidas as principais características, objetivos, restrições e recursos que fundamentam o desenvolvimento do dispositivo e servem como referência para todas as equipes envolvidas no projeto.

Definição do Produto

O **DengBuster** é uma armadilha portátil, autônoma e conectada, que identifica e captura insetos de forma seletiva por meio de algoritmos de áudio e imagem embarcados. O dispositivo foi desenvolvido inicialmente para capturar o *Aedes aegypti* vivo, fornecendo dados ambientais e populacionais em tempo real para estudos científicos, ações de vigilância epidemiológica e suporte à saúde pública. Seu funcionamento é adaptável: mudando o atrativo e o modelo de detecção, o sistema pode ser ajustado para monitorar outras espécies.

Perspectiva do Produto

A solução combina hardware e software embarcado: LEDs e uma solução atrativa simulam o ambiente ideal para o mosquito; sensores captam som e imagem do inseto que entra na armadilha; algoritmos executados localmente classificam a espécie e ativam mecanismos de captura seletiva. O mosquito identificado como alvo é mantido vivo em uma fita adesiva atóxica, enquanto os dados são transmitidos para uma interface web, onde podem ser acessados por operadores e gestores.

Resumo dos Recursos

Os recursos listados na tabela abaixo garantem o funcionamento adequado do produto, assegurando sua eficácia na atração, identificação, captura e monitoramento dos mosquitos *Aedes aegypti* e das condições climáticas do ambiente.

Tabela 1: Recursos essenciais do sistema e suas descrições

Recurso	Descrição
Sistema de detecção sonora	Algoritmo inspirado no Shazam, identifica o padrão acústico das asas do mosquito alvo.
Sistema de detecção visual	Reconhecimento de imagem baseado em IA para verificação da captura e contagem dos mosquitos.
Sistema de captura de som	Microfone MEMS sensível, capaz de captar sinais mesmo em ambientes com ruído moderado.
Sistema de captura seletiva	Ventoinhas PWM que direcionamo inseto corretamente combase na identificação realizada.
Sistema de atração	Arranjo de LEDs específicos e recipiente comágua orgânica atrativa para o Aedes aegypti.
Sistema de alimentação	Painel solar combateria reserva, garantindo operação autônoma e ininterrupta ao longo do dia.
Sensores climáticos	Sensor DHT22 mede temperatura e umidade relativa, registrando as condições ambientais da captura.
Sistema de telemetria	Comunicação via Wi-Fi ou BLE para envio de dados para o banco e dashboard.
Das hboard web	Interface intuitiva e responsiva para visualização dos dados de captura e clima em tempo real.

Fonte: Elaborado pelos autores (2025)

Restrições

Restrições de Implementação

O produto visa futura comercialização e patenteamento. O protótipo funcional entregue (MVP 1) priorizou funcionalidades essenciais e uso de

componentes de baixo custo. O valor total do MVP foi de R\$ 1900, incluindo margem de testes, mas estimamos que o custo comercial da armadilha externa fique em torno de R\$ 1400, e a versão interna (sem painel solar) por volta de R\$ 900. O prazo estipulado para entrega do MVP funcional foi 11/07/2025.

Restrições de Uso

O equipamento exige manutenção semanal, com troca da fita adesiva e coleta dos insetos capturados. Não deve ser utilizado para captura e soltura de insetos.

Identificação de Soluções Comerciais

Foi realizado um levantamento de patentes e armadilhas disponíveis no mercado. A maioria das soluções é voltada para extermínio, não havendo um produto que una captura viva, envio de dados em tempo real e possibilidade de análise laboratorial. Identificamos nessa lacuna uma grande oportunidade para atuação tanto em vigilância epidemiológica quanto em pesquisa científica.

Pesquisas Acadêmicas Relevantes

A literatura científica destacou a importância de espécimes vivos para estudos entomológicos, análises virais e resistência a inseticidas. Além disso, o monitoramento contínuo das populações de vetores é um dos principais fatores para antecipar surtos e tomar decisões estratégicas. O DengBuster foi idealizado para atender essa demanda, unindo tecnologia e impacto social.

Objetivo Geral

Desenvolver uma armadilha tecnológica, portátil, de baixo custo e com captura seletiva viva, capaz de identificar o *Aedes aegypti* por som e imagem, enviar dados em tempo real, operar de forma autônoma e contribuir com estratégias de monitoramento e combate às arboviroses.

Objetivos Específicos

Os objetivos específicos representam as metas pontuais que, quando alcançadas em conjunto, permitirão a concretização do objetivo geral do produto. Estes objetivos direcionam as ações das equipes e estabelecem critérios claros para avaliação do sucesso do projeto:

- 1. Projetar a estrutura física otimizada e portátil.
- 2. Implementar sistemas integrados de atração, detecção e captura seletiva.
- 3. Desenvolver sensores e sistemas embarcados para análise de som e imagem.
- 4. Integrar telemetria e interface de visualização de dados.
- 5. Validar o funcionamento por meio de testes operacionais em campo.
- 6. Criar documentação técnica e de divulgação científica.

Objetivos Secundários

- 1. Explorar a adaptabilidade do sistema para outras espécies-alvo.
- 2. Buscar viabilidade de patente e produção em escala.
- 3. Fomentar o uso da tecnologia em pesquisas e políticas públicas.

Ambiente do Usuário

O ambiente de uso do produto envolve diferentes locais e condições que influenciam diretamente seu funcionamento e eficácia. A tabela abaixo resume os principais aspectos relacionados ao ambiente de operação e as necessidades de manutenção.

Tabela 2: Características do ambiente de uso e operação do produto

Aspecto Descrição

Locais de instalação Ambientes urbanos e rurais como escolas, unidades de saúde, quintais e áreas públicas.

Aspecto	Descrição
Condições ambientais	Temperatura: 10–40°C Umidade: 20–90% Funciona mesmo em dias nublados ou chuvosos leves.
Operação	Funcionamento autônomo compainel solar durante o dia e bateria reserva após o pôr do sol.
Manutenção	Troca semanal da fita adesiva por operador treinado.

Fonte: Elaborado pelos autores (2025)

Versão	Descrição	Data	Responsável
1.0	Criação do documento	24/04/2025	Ian Lucca Soares Mesquita e Miguel Moreira da Silva de Oliveira
1.1	Reestruturação do documento e adição parcial do conteúdo	25/04/2025	Arthur Trindade
1.2	Finalizando documento	30/04/2025	Arthur Trindade
4.0	Dados atualizados do MVP	18/07/2025	Arthur Trindade e Miguel Oliveira

Termo de Abertura do Projeto

Introdução

O Termo de Abertura do Projeto (TAP) formaliza o início do projeto **DengBuster – Armadilha Inteligente para Insetos Vetores**, desenvolvido no âmbito da disciplina Projeto Integrador de Engenharia II da Universidade de Brasília (UnB). Este documento define os objetivos, justificativas, entregas, restrições, riscos, stakeholders, orçamento e marcos principais do projeto, garantindo um entendimento comum entre todos os envolvidos.

Descrição do Projeto

O projeto consiste no desenvolvimento de uma armadilha portátil, de baixo custo e de operação autônoma, destinada à captura seletiva de mosquitos *Aedes aegypti*. O dispositivo utiliza estímulos visuais e químicos para atrair o inseto, realizando a identificação por meio de algoritmos de classificação acústica e visual. Caso a espécie detectada seja compatível com o mosquito-alvo, um sistema de ventilação direciona o inseto para uma câmara de captura com fita adesiva atóxica, onde ele é preservado vivo para posterior análise. Insetos não-alvo são liberados automaticamente, garantindo a seletividade do processo.

O DengBuster opera com um sistema embarcado baseado em Raspberry Pi, alimentado por energia solar com suporte de bateria reserva. Além da função de captura, o sistema registra e transmite dados como temperatura, umidade e quantidade de capturas para uma interface web, viabilizando o monitoramento epidemiológico em tempo real.

Justificativa do Projeto

Doenças como dengue, zika e chikungunya representam uma preocupação crescente no Brasil, sendo transmitidas principalmente pelo mosquito *Aedes aegypti*. A maioria das tecnologias existentes carece de funcionalidades inteligentes, são pouco acessíveis ou focadas apenas na eliminação do mosquito.

O **DengBuster** surge como uma alternativa inovadora, que alia inteligência embarcada, dados em tempo real e preservação do espécime. A solução permite monitoramento populacional, tomada de decisões epidemiológicas e suporte a pesquisas entomológicas e laboratoriais, com potencial de aplicação também no controle de outros insetos vetores.

Objetivos do Projeto

Objetivo Geral

Desenvolver um protótipo funcional de armadilha inteligente capaz de atrair, identificar seletivamente e capturar mosquitos *Aedes aegypti*, registrando dados ambientais e de captura de forma automática e conectada.

Objetivos Específicos

- Projetar uma estrutura física modular, leve e resistente;
- Implementar sistemas de atração por LED e mistura atrativa orgânica;
- Desenvolver algoritmos de classificação acústica e visual;
- Integrar sensores e atuadores em um sistema embarcado (Raspberry Pi);
- Criar uma interface web para análise dos dados capturados;
- Garantir funcionamento autônomo com energia solar e bateria reserva;
- Produzir documentação técnica completa da solução desenvolvida.

Requisitos de Alto Nível

Requisito	Descrição
Atração ativa	Uso de LEDs UV e solução líquida atrativa para fêmeas do mosquito
Identificação automatizad	a Algoritmos de some imagem executados localmente

Requisito	Descrição
Captura seletiva	Preservação apenas dos mosquitos-alvo, outros são liberados
Registro de dados ambientais	Leitura de temperatura, umidade, data e hora
Operação autônoma	Funcionamento com painel solar e autonomia notuma com bateria
Portabilidade	Peso inferior a 10 kg e montagem simplificada
Baixo custo	Estimativa comercial futura: R\$ 1400 (externa) / R\$ 900 (interna)

Restrições

- Custo total do MVP: R\$1900,00 (versão externa com margem de erro);
- **Tempo de execução:** De 19/03/2025 a 18/07/2025;
- Energia: Sistema híbrido com painel solar e bateria de lítio reserva;
- Uso previsto: Ambientes urbanos com manutenção semanal;
- Componentes: Priorizar soluções de baixo custo e fácil aquisição.

Cronograma e Marcos

Data	Marco	Descrição
04/04/2025	Início do Projeto	Início oficial das atividades do semestre
02/05/2025	Ponto de Controle 1	Apresentação da concepção e divisão de subsistemas
30/06/2025	Ponto de Controle 2	Demonstração da integração e funcionamento dos subsistemas
18/07/2025	Apresentação Final (PC3)	Entrega final do MVP, documentação e pitch de apresentação

Orçamento

O custo do MVP foi de **R\$1900,00**, considerando testes, erros e substituições de componentes. Com ajustes e produção em escala, o custo estimado para a versão externa da armadilha é de **R\$1400,00** e para a versão interna (sem painel solar), **R\$900,00**.

Riscos

Risco	Descrição
Erros na classificação	Algoritmo pode ter imprecisões em ambientes com muito ruído ou baixa iluminação
Falta de sol	Dias consecutivos nublados podem afetar a recarga da bateria
Ruído ambiental	Pode interferir na captação acústica do mosquito
Logística	Atrasos em entregas e falhas de componentes podem comprometer o prazo
Condições adversas	Exposição prolongada a chuvas fortes ou vandalismo em ambientes públicos

Partes Interessadas

Stakeholder	Papel	Responsabilidade	Critério de Sucesso	Envolvimento
Equipe DengBuster	Equipe de desenvolvimento	Desenvolvimento, testes, documentação	Protótipo funcional e documentado	Alto
Professores da disciplina	Orientadores e avaliadores	Acompanhamento e avaliação dos marcos	Entregas alinhadas ao cronograma	Alto
Usuários finais (potenciais)	Gestores de saúde, pesquisadores	Interesse futuro no uso da solução	Potencial de aplicação real	Médio

Referências bibliográficas

- PROJECT MANAGEMENT INSTITUTE. A Guide to the Project Management Body of Knowledge (PMBOK® Guide). 6. ed. Newtown Square, PA: Project Management Institute, 2017.
- Pesquisas e entrevistas realizadas pela equipe do projeto DengBuster.

Versão	Descrição	Data	Autor(es)
1.0	Criação do Termo de Abertura	27/04/2025	Ian Lucca Soares Mesquita e Miguel Oliveira
4.0	Atualização pós-entrega do MVP	18/07/2025	Miguel Oliveira

Requisitos gerais

Introdução

Este documento descreve os requisitos funcionais e não funcionais do projeto **DengBuster**, uma armadilha inteligente para a captura seletiva de mosquitos *Aedes aegypti*. Os requisitos foram organizados por área técnica (Eletrônica, Energia, Estrutura e Software), categorizados por tipo, prioridade e finalidade. Esta especificação serve como referência para todas as fases de desenvolvimento do projeto, garantindo alinhamento entre os integrantes e facilitando a rastreabilidade das entregas ao longo da implementação.

Requisitos

Código	Área	Tipo	Prioridade	Nome	Descrição
ELE-F01	Eletrônica	Funcional	Alta	Comunicação	Um sistema para efetuar a comunicação dos dados capturados com a interface de software.
ELE-F02	Eletrônica	Funcional	Alta	Leitura dos Sensores	Um sistema para coletar os dados provenientes dos sensores (Temperatura/Umidade).
ELE-F03	Eletrônica	Funcional	Alta	Captação de Áudio	Componente responsável pela captação do som das asas do mosquito.
ELE-F04	Eletrônica	Funcional	Alta	Controle dos Atuadores	Um sistema para controlar o acionamento e desligamento dos ventiladores.
ELE-F05	Eletrônica	Funcional	Alta	Processamento de Dados	Um sistema para processar os dados de som do mosquito.
ELE-F06	Eletrônica	Funcional	Alta	Sistema de Atração	Componente responsável pela emissão de estímulos (luz LED e CO ₂) para atrair mosquitos de forma seletiva.
ELE-F07	Eletrônica	Funcional	Media	Captura de Imagem	Componente responsável pela captura de imagens dos insetos para entrada no algoritmo de classificação visual.
ELE-FN01	Eletrônica	Não funcional	Média	Precisão na Captura de Dados	Deve garantir que o valor analógico seja convertido corretamente para digital.
ELE-FN02	Eletrônica	Não funcional	Média	Calibração do Microfone	Deve garantir que a faixa de frequência seja compatível com a frequência da batida de asa do mosquito.
ELE-FN03	Eletrônica	Não funcional	Média	Armazenamento de Dados	Armazenar os dados que seriam enviados para interface caso seja perdida a conexão.
ENG-F01	Energia	Funcional	Alta	Proteção de Eletrônica	Desenvolver um sistema de proteção para o equipamento eletrônico presente.
ENG-F02	Energia	Funcional	Alta	Proteção de Carregamento	Desenvolver um sistema de proteção para o carregamento da bateria.
ENG-F03	Energia	Funcional	Alta	Alimentação	Sistema de distribuição de energia e potência para o sistema e subsistemas existentes.
ENG-F04	Energia	Funcional	Alta	Carregamento	Sistema de carregamento da bateria.
ENG-FN01	Energia	Não funcional	Média	Autonomia do Sistema	A bateria deverá ser capaz de fornecer energia para a armadilha por 15 dias.

Código	Área	Тіро	Prioridade	Nome	Descrição
ENG-FN02	Energia	Não funcional	Média	Desempenho de Carregamento	A bateria deverá carregar até x% em y minutos.
ENG-FN03	Energia	Não funcional	Média	Segurança	Compatibilidade com as normas de segurança aplicáveis.
ENG-FN04	Energia	Não funcional	Média	Conformidade	Assegurar que o sistema esteja de acordo com as normas elétricas estabelecidas.
ENG-FN05	Energia	Não funcional	Média	Reinício Autônomo	O sistema deve reiniciar automaticamente com a luz do dia após desligamento por falta de bateria.
EST-F01	Estrutura	Funcional	Alta	Estrutura das Ventoinhas	Estrutura para posicionar e acionar as ventoinhas que empurram o mosquito.
EST-F02	Estrutura	Funcional	Alta	Compartimento de Eletrônica	Estrutura para comportar os componentes eletrônicos.
EST-F03	Estrutura	Funcional	Alta	Sistema de Captura	Estrutura responsável por direcionar e reter os mosquitos capturados.
EST-F04	Estrutura	Funcional	Alta	Preservação dos Mosquitos	Estrutura deve evitar dano físico aos mosquitos durante a captura e armazenamento.
EST-FN01	Estrutura	Não funcional	Média	Estabilidade	Resistência a fenômenos naturais (vento, chuva, calor).
EST-FN02	Estrutura	Não funcional	Média	Resistência	Suportar cargas dinâmicas sem deformação.
EST-FN03	Estrutura	Não funcional	Média	Custo Reduzido	Custo de produção da estrutura menor que R\$ 300,00.
EST-FN04	Estrutura	Não funcional	Média	Leveza	Massa total da estrutura inferior a 10 kg.
EST-FN05	Estrutura	Não funcional	Média	Montável	Fácil montagem e desmontagem para manutenção e coleta de amostras.
SW-F01	Software	Funcional	Alta	Relatório de Capturas	Dashboard interativo contendo dados de capturas da armadilha.
SW-F02	Software	Funcional	Alta	Identificação de Aedes aegypti	Algoritmo para distinguir <i>Aedes aegypti</i> de outros insetos por imagem e/ou som.
SW-F03	Software	Funcional	Alta	Comunicação embarcado— interface	Integração entre o software embarcado e a interface web.
SW-FN01	Software	Não funcional	Média	Usabilidade	Interface deve ser intuitiva, permitindo rápida compreensão dos dados.
SW-FN02	Software	Não funcional	Média	Limitações de Hardware	O software embarcado deve operar dentro das restrições do hardware disponível.
SW-FN03	Software	Não funcional	Média	Velocidade	O algoritmo deve processar cada captura em menos de 2 segundos.

Código	Área	Tipo	Prioridade	Nome	Descrição
SW-FN04	Software	Não funcional	Média	Paralelismo	O dashboard deve atualizar dados em tempo real.
SW-FN05	Software	Não funcional	Média	Precisão	O algoritmo de detecção deve atingir precisão superior a 90 %.

Justificativas

Os itens a seguir descrevem o papel de cada área na implementação dos requisitos:

Área	Justificativa
Eletrônica	Carante recepção de dados de sensores, acionamento de atuadores, comunicação com a interface e potência.
Energia	Assegura autonomia da armadilha até a coleta dos mosquitos para pesquisa.
Estrutura	Define a carcaça física, considerando estabilidade, resistência e facilidade de manutenção.
Software	Constrói algoritmo de detecção e apresenta os dados coletados em interface web intuitiva.

Conclusão

Este relatório apresentou de forma detalhada os requisitos funcionais e não funcionais, bem como as justificativas de cada engenharia envolvida, para o desenvolvimento de uma armadilha autônoma de captura de *Aedes aegypti*.

Versão	Descrição	Data	Autor(es)
1.0	Criação do Termo de Abertura	27/04/2025	Ana Beatriz Norberto, Arthur Marmo Cathalá e Kauã Vinícius Ponte Aguiar
1.1	Padronização e incremento	01/05/2025	Miguel Moreira da Silva de Oliveira

Integração entre as áreas

Introdução

Este documento apresenta a integração entre as diferentes áreas de engenharia envolvidas no desenvolvimento do projeto **DengBuster**, realizado no âmbito da disciplina Projeto Integrador 2 da Universidade de Brasília (UnB). O projeto consiste na criação de uma armadilha inteligente para captura seletiva de mosquitos *Aedes aegypti*, unindo conhecimentos das engenharias Aeroespacial, Automotiva, de Energia, Eletrônica e de Software.

Cada área contribui com competências específicas que, em conjunto, viabilizam o funcionamento completo do dispositivo — desde a estrutura física e gerenciamento energético até os algoritmos embarcados de identificação de insetos. Este documento tem como objetivo detalhar essas contribuições e evidenciar como elas se integram para o sucesso do sistema como um todo.

Integração das Áreas

Eletrônica

A engenharia eletrônica é responsável pela implementação dos sensores, atuadores e circuitos de controle que possibilitam o funcionamento inteligente da armadilha. A confiabilidade e precisão desses sistemas são fundamentais para a captura seletiva do mosquito.

• Microfone de Alta Sensibilidade

Responsável pela captação do som do bater de asas dos insetos, fornecendo dados para o algoritmo de classificação acústica.

Câmera

Captura imagens dos insetos em tempo real para análise visual e confirmação da espécie.

Arranio de LEDs

Conjunto de LEDs estrategicamente posicionados com espectro ajustado para maximizar a atração do Aedes aegypti.

• Ventiladores (PWM)

Geram correntes de ar controladas para direcionar o mosquito identificado para a câmara de captura ou para o ambiente externo, em caso de rejeição.

• Sensores Ambientais (DHT22)

Realizam a medição de temperatura e umidade, com precisão adequada para análise epidemiológica.

Software

A engenharia de software é responsável pela camada lógica e computacional do sistema. Os algoritmos de detecção, controle e interface estão centralizados nesta área, garantindo que os dados capturados sejam processados corretamente e apresentados ao usuário.

• Algoritmos de Classificação

Utilização de Machine Learning para identificação acústica (baseada em frequência de batida de asas) e visual (via redes neurais convolucionais) do *Aedes aegypti*.

• Firmware Embarcado

Controle dos sensores, atuadores e tomada de decisões em tempo real, executado em uma Raspberry Pi.

• Interface Web (Dashboard)

Apresenta dados de captura, condições ambientais e histórico de forma intuitiva e acessível por meio de painel interativo responsivo.

Estrutura Física (Aeroespacial e Automotiva)

As engenharias Aeroespacial e Automotiva são responsáveis pelo projeto físico da armadilha, assegurando que sua estrutura seja leve, robusta, modular e de fácil manutenção.

• Carcaça Modular

Desenvolvida com modelagem CAD, a estrutura comporta todos os componentes internos, permite a troca de fitas adesivas e coleta segura dos mosquitos.

• Proteção e Resistência

Projeto otimizado para resistir à exposição solar, chuva leve e variações térmicas, mantendo integridade estrutural e operacional em campo.

• Portabilidade

Peso total inferior a 10 kg e dimensões adequadas para transporte manual e montagem sem ferramentas.

Energia

A engenharia de energia é responsável pelo fornecimento elétrico autônomo e seguro de todo o sistema, utilizando fontes renováveis e garantindo autonomia para operação ininterrupta.

• Dimensionamento da Bateria

Seleção de bateria LiFePO4 capaz de alimentar o sistema, incluindo reserva para operação noturna por até 5 horas.

• Carregamento Solar

Sistema de recarga por painel solar, com circuitos de proteção contra sobrecarga, subtensão e curto-circuito.

• Gerenciamento Energético

Controle eficiente do consumo de energia, priorizando subsistemas críticos durante operação com baixa carga.

Conclusão

A integração entre as diferentes áreas de engenharia foi fundamental para o desenvolvimento do DengBuster como um sistema completo, eficiente e funcional. Cada especialidade contribuiu com soluções específicas que, em conjunto, resultam em uma armadilha inteligente de baixo custo, seletiva, portátil e energeticamente autônoma. Esta sinergia interdisciplinar garante que o projeto atenda às exigências tanto técnicas quanto sociais, contribuindo significativamente para o combate ao *Aedes aegypti* e o avanço da pesquisa científica na área de vigilância entomológica.

Versão	Descrição	Data	Autor(es)
1.0	Criação do documento	27/04/2025	Alejandro Lopez
1.1	Padronização e incremento	01/05/2025	Miguel Moreira da Silva de Oliveira

Levantamento de Riscos – Projeto DengBuster

Introdução

Este documento apresenta a análise de riscos do projeto **DengBuster**, armadilha inteligente para captura seletiva de mosquitos *Aedes aegypti*. O levantamento tem como objetivo identificar, avaliar e mitigar os principais riscos que possam comprometer o sucesso do projeto, considerando aspectos técnicos, operacionais, humanos, financeiros e de comunicação. Os riscos estão classificados por categoria temática, cada um descrito com sua probabilidade, impacto e estratégias de mitigação propostas.

Riscos por Categoria

☐ Algoritmo

Risco	Descrição	Probabilidade	Impacto	Mitigação
Baixa qualidade do microfone	Pode gerar ruído e capturar mal os sons dos mosquitos.	Média	Alto	Escolha de microfones com alta sensibilidade e resposta adequada à faixa de frequência do mosquito.
Ruídos externos	Sons ambientais (vento, fala, máquinas) podem interferir na análise.	Alta	Alto	Aplicação de filtros físicos e digitais no microfone e no algoritmo.
Frequências similares	Captura de sons comfrequência parecida pode gerar falsos positivos.	Alta	Alto	Treinamento robusto do algoritmo e ajustes no pré-processamento do sinal.
Baixo desempenho	Latência elevada na classificação pode prejudicar a resposta do sistema.	Média	Médio	Otimização do código e uso de hardware compatível.

☐ Saúde

Risco	Descrição	Probabilidade	Impacto	Mitigação
Exposição a mosquitos vetores	Contato acidental comespécimes potencialmente infectados durante manutenção do sistema.	Baixa	Médio	Uso de EPIs (luvas, máscaras, repelentes) e estrutura segura para coleta.

□ Prazo

Risco	Descrição	Probabilidade	Impacto	Mitigação
Dependência de terceiros	Etapas que exigem validações externas podem causar atrasos.	Baixa	Médio	Antecipar contatos e definir prazos claros comtodos os envolvidos.
Sobrecarga da equipe	Acúmulo de demandas acadêmicas pode comprometer entregas do projeto.	Média	Médio	Planejamento realista e reuniões de alinhamento semanais.
Integração demorada entre hardware e software	Problemas na junção dos subsistemas podem comprometer o cronograma.	Alta	Alto	Implementar testes incrementais e desenvolvimento em ciclos curtos.

□ □ Comunicação

Risco	Descrição	Probabilidade	Impacto	Mitigação
Falta de alinhamento entre áreas	Divergências entre prioridades e abordagens podem gerar retrabalho.	Média	Alto	Definição clara de papéis e comunicação contínua entre grupos.
Inadimplência de tarefas	Membros não entregamatividades nos prazos definidos.	Média	Alto	Monitoramento do progresso com ferramentas de gestão.
Documentação desatualizada ou ausente	Falta de registros pode prejudicar continuidade e rastreabilidade do projeto.	Média	Médio	Manter repositório único e atualizado para documentos oficiais.
Falta de feedback entre subgrupos	Falta de comunicação pode impedir ajustes e melhorias em tempo hábil.	Média	Alto	Uso de ferramentas colaborativas e reuniões de sincronização.

□□ Tecnologia

Risco	Descrição	Probabilidade	Impacto	Mitigação
Defeitos em sensores	Falhas técnicas ou calibração incorreta podem comprometer dados.	Baixa	Alto	Testes regulares e calibração adequada dos sensores.
Falha no sistema de captura	Ventiladores podem falhar ou apresentar mau funcionamento.	Baixa	Alto	Verificações periódicas e uso de componentes confiáveis.
Instabilidade no fornecimento de energia	Problemas no carregamento ou bateria podem desligar o sistema.	Baixa	Alto	Monitoramento constante da carga e verificação da montagem elétrica.

\square Gestão

Risco	Descrição	Probabilidade	Impacto	Mitigação
Estouro de orçamento	Custos podem exceder os limites definidos.	Média	Médio	Planejamento financeiro e controle contínuo de despesas.
Qualidade técnica insuficiente	Produto final pode não atingir os padrões esperados.	Média	Médio	Definir critérios de aceitação e testes de qualidade nas entregas parciais.
Planejamento inadequado	Cronograma pode não refletir a realidade de execução.	Média	Médio	Construção de cronograma detalhado com checkpoints e revisões periódicas.

Versão	Descrição	Data	Autor(es)
1.0	Criação do Documento	23/04/2025	Bruno e Walter

Versão	Descrição	Data	Autor(es)
2.0	Inclusão dos riscos adicionais (algoritmo, saúde, prazo, comunicação, tecnologia)	24/04/2025	Paulo, Bruno, Walter
2.1	Padronização e incremento	01/05/2025	Miguel Moreira da Silva de Oliveira

Cronograma detalhado

Cronograma Detalhado

O cronograma abaixo apresenta a distribuição temporal das principais atividades do projeto **DengBuster**, organizadas por semanas, conforme o calendário da disciplina Projeto Integrador 2. A divisão considera as etapas de pesquisa, desenvolvimento, testes e entrega final, permitindo acompanhar a evolução do projeto e realizar ajustes conforme necessário.

Período	Atividades
Semanas 1-2	Pesquisa de patentes, definição de requisitos e elaboração do Termo de Abertura
Semanas 3-4	Projeto preliminar da estrutura mecânica e dos esquemáticos eletrônicos
Semanas 5–6	Desenvolvimento do firmware e do algoritmo de detecção por áudio (validação em bancada)
Semanas 7–8	Montagem do primeiro protótipo e testes unitários de hardware
Semanas 9–10	Integração entre hardware e software, com testes de captura em ambiente controlado
Semana 11	Otimizações de desempenho e refinamento da interface web
Semana 12	Testes de campo, coleta de dados e ajustes finais no sistema
Semana 13	Finalização da documentação, elaboração da EAP e preparação da apresentação final

Versão	Descrição	Data	Responsável
1.0	Criação do documento	24/04/2025	Vinicius de Oliveira Santos

Público-Alvo – Projeto DengBuster

Introdução

Este documento apresenta os principais públicos que podem se beneficiar da utilização do **DengBuster**, uma armadilha inteligente voltada à captura seletiva de mosquitos *Aedes aegypti*. O objetivo é mapear os perfis de usuários que podem utilizar o dispositivo como ferramenta de vigilância epidemiológica, pesquisa científica ou apoio a políticas públicas de saúde. Também são descritas orientações para participação e instalação do dispositivo em campo.

Públicos Interessados

• Cidadãos

Moradores de áreas com histórico de arboviroses que desejam colaborar com o monitoramento entomológico em suas comunidades, promovendo saúde pública preventiva.

• Universidades e centros de pesquisa

Grupos acadêmicos envolvidos em estudos sobre entomologia, biotecnologia, ecologia de vetores, genética e comportamento de mosquitos.

• Laboratórios e instituições de pesquisa

Organizações que realizam análises moleculares, testes de resistência a inseticidas, estudos virais ou desenvolvimento de novas metodologias de combate ao vetor.

• Secretarias de Saúde e órgãos públicos

Entidades responsáveis por estratégias de combate à dengue, zika e chikungunya, interessadas em dados de campo confiáveis e soluções replicáveis de monitoramento vetorial.

Participação

Qualquer interessado poderá requisitar o dispositivo e instalá-lo em local estratégico para coleta e análise de dados entomológicos. A participação não se restringe aos grupos listados — o projeto **DengBuster** busca promover uma rede colaborativa de monitoramento, fortalecendo a base de dados sobre a presença do *Aedes aegypti* em diferentes contextos climáticos e geográficos. Essa abordagem contribui diretamente para a formulação de políticas públicas, ações preventivas e pesquisas científicas mais eficazes.

Versão	Descrição	Data	Responsável
1.0	Criação do documento	24/04/2025	Miguel Moreira e Christian Hirsch
1.1	Versionamento e ajustes	26/04/2025	Christian Hirsch
1.2	Padronização e incremento	01/05/2025	Miguel Moreira da Silva de Oliveira
4.0	Correções pos MVP	18/07/2025	Miguel Moreira da Silva de Oliveira

Estrutura Analítica do Projeto (EAP) - DengBuster

Introdução

A Estrutura Analítica do Projeto (EAP) é uma ferramenta de gestão que organiza todas as atividades do projeto em uma hierarquia lógica e detalhada. O objetivo é facilitar o planejamento, execução, monitoramento e controle das entregas ao dividir o projeto em partes menores e mais gerenciáveis.

No contexto do projeto **DengBuster**, a EAP foi desenvolvida considerando as etapas de pesquisa, desenvolvimento de hardware e software, validação e documentação. Este documento apresenta duas versões da EAP: a versão escrita em formato textual hierárquico e a versão visual em formato de diagrama (WBS), para melhor compreensão e acompanhamento.

Desenvolvimento do Projeto DengBuster

EAP Visual (Diagrama)

🗆 A versão visual será adicionada futuramente como imagem ou gráfico interativo representando a hierarquia de atividades do projeto.

1. EAP Escrita (Hierárquica)

1.1 Planejamento e Pesquisa

1.1.1 PESQUISA SOBRE O MOSQUITO AEDES AEGYPTI

- Levantamento bibliográfico sobre ciclo de vida e hábitos do vetor
- Identificação de horários e locais de maior atividade
- Sistematização das informações relevantes para o projeto

1.1.2 ESTUDO DE MÉTODOS DE CAPTURA

- Análise de armadilhas tradicionais e comerciais
- Estudo sobre viabilidade e vantagens de manter o mosquito vivo
- Seleção preliminar dos métodos mais promissores

1.1.3 ESTUDO DE TECNOLOGIAS E PATENTES EXISTENTES

- Pesquisa de projetos semelhantes em artigos e relatórios técnicos
- Consulta a bancos de patentes nacionais e internacionais
- Registro e comparação das tecnologias encontradas

1.1.4 CONEXÃO COM COMUNIDADES DE PESQUISA

- Mapeamento de grupos de pesquisa (universidades, institutos)
- Contato com professores e pesquisadores relevantes
- Parcerias para testes, dados ou validação científica

1.1.5 ESTRUTURAÇÃO DO PROJEIO

- Definição das áreas (hardware, software, biologia etc.)
- Divisão preliminar de responsabilidades

1.1.6 LEVANTAMENTO DE REQUISITOS

- Identificação das necessidades do público-alvo
- Definição de critérios técnicos (autonomia, sensores, precisão)
- Elaboração do Termo de Abertura

1.2 Desenvolvimento do Hardware

1.2.1 PROJETO DA ESTRUTURA FÍSICA DA ARMADILHA

- Definição do tipo de armadilha (portátil, estacionária etc.)
- Estudo de materiais (plástico, acrílico etc.)
- Modelagem 3D da carcaça e compartimentos internos
- Avaliação da ventilação e acesso dos mosquitos
- Prototipagem da estrutura

1.2.2 SELEÇÃO E INTEGRAÇÃO DE COMPONENTES

- Identificação dos sensores, microfones, câmeras e demais peças
- Pesquisa e comparação de opções viáveis
- Teste de compatibilidade com o microcontrolador
- Aquisição dos componentes

1.2.3 DESENVOLVIMENTO DO SISTEMA DE CAPTURA

- Definição do método (sucção, fita adesiva etc.)
- Projeto do mecanismo de entrada e retenção
- Montagem elétrica/mecânica
- Testes de funcionalidade

1.3 Desenvolvimento do Software

1.3.1 DESENVOLVIMENTO DO ALGORITMO DE IDENTIFICAÇÃO

- Definição dos parâmetros de entrada (áudio, imagem etc.)
- Escolha da abordagem (machine learning, reconhecimento de padrões)
- Construção do banco de dados de referência
- Treinamento e validação com dados reais
- Ajustes e otimização da acurácia

1.3.2 IMPLEMENTAÇÃO DA INTERFACE DE USUÁRIO

- Definição de requisitos de usabilidade
- Criação de wireframes e layout
- Desenvolvimento em ambiente adequado (web/mobile/embarcado)
- Testes de navegação com feedback de usuários

1.3.3 INTEGRAÇÃO COMO HARDWARE

- Comunicação com sensores e microcontrolador
- Coleta e tratamento dos dados
- Testes em tempo real com dispositivos físicos
- Ajustes para sincronização de dados com o algoritmo

1.4 Testes e Validação

1.4.1 TESTES UNITÁRIOS

- Testes elétricos e funcionais dos sensores e atuadores
- Validação do algoritmo de identificação
- Testes de estabilidade da interface
- Testes do sistema de captura de forma isolada

1.4.2 TESTES DE INTEGRAÇÃO

- Integração entre hardware e software
- Testes de fluxo completo de dados (sensor ightarrow algoritmo ightarrow interface)
- Verificação da comunicação entre dispositivos

• Ajustes em caso de falhas

1.4.3 TESTES EM AMBIENTE REAL

- Escolha de local controlado (laboratório, estufa etc.)
- Testes com mosquitos reais
- Avaliação da taxa de captura e acurácia da identificação
- Análise de desempenho em condições reais

1.5 Documentação e Apresentação Final

1.5.1 ENTREGA DO PROTÓTIPO FINAL

- Revisão do funcionamento do protótipo
- Embalagem, transporte e preparação para demonstração
- Apresentação técnica e funcional à banca avaliadora

1.5.2 ELABORAÇÃO DO RELATÓRIO FINAL

- Estruturação do conteúdo (introdução, metodologia, resultados etc.)
- Coleta de dados e imagens
- Redação técnica e revisão do conteúdo
- Formatação e padronização conforme orientações da banca

1.5.3 PREPARAÇÃO DA APRESENTAÇÃO PARA A BANCA

- Definição de roteiro e tempo de fala
- Treinamento da equipe para exposição oral e respostas

Versão	Descrição	Data	Responsável
1.0	Criação da EAP escrita	30/04/2025	Luis Felipe Rivera
1.1	Padronização e incremento	01/05/2025	Miguel Moreira da Silva de Oliveira

Estimativa de Custos – Projeto DengBuster

Introdução

Este documento apresenta a estimativa de custos para construção dos protótipos do projeto **DengBuster**, uma armadilha inteligente voltada à captura seletiva e identificação de mosquitos *Aedes aegypti*. O dispositivo integra módulos de atração (água, feromônio e luz), sensores ambientais, algoritmos de reconhecimento acústico e visual, e uma estrutura portátil.

Inicialmente, foi considerada a utilização do **ESP32** como unidade de controle. Contudo, com o avanço do projeto e a necessidade de execução local de algoritmos complexos de visão computacional, foi integrada a **Raspberry Pi 4** como nova base computacional.

As estimativas apresentadas a seguir comparam três versões do protótipo — duas anteriores, de menor complexidade, e uma versão final mais completa — permitindo avaliar a evolução técnica e o impacto no custo.

□□ Importante: os custos relacionados à estrutura física final da armadilha (como carcaça impressa, base de suporte e proteção mecânica) ainda estão em levantamento e não estão incluídos nesta versão do documento.

Componentes Técnicos e Funções

Componente	Função	Responsabilidades Técnicas	Destaque	Valor (R\$)
ESP32	Microcontrolador	Processamento básico, controle de periféricos e comunicação via Wi-Fi	Baixo custo e boa performance	R\$ 45,00
Raspberry Pi 4	Mini computador	Processamento de algoritmos complexos (CNNs), múltiplos sensores e integração com câmera	Ideal para IA embarcada e visão computacional	R\$ 600,00
Ventoinha 12V 50×50×15mm	Fluxo de ar	Direcionamento de mosquitos, dispersão de feromônio e controle térmico	Formato compacto, ideal para estrutura reduzida	R\$ 14,44 (cada)
Sensor DHT11 (KY-015)	Temperatura/Umidade	Coleta de dados ambientais relevantes para análise epidemiológica	Integração simples e compatibilidade KY- 015	R\$ 22,22
Microfone USB Hrebos HS-29	Captura de som	Captação do som das asas para identificação acústica	Alta sensibilidade	R\$ 40,00
Módulo Relé 2 Canais 5V	Acionamento	Controle seguro de periféricos (excoolers, LEDs) via microcontrolador	Proteção dos circuitos	R\$ 17,78
Amplificador	Condicionamento de áudio	Amplificação do sinal do microfone antes do processamento	Previsto, depende do ruído e sensibilidade real	R\$ 15,00 – R\$ 30,00
Módulo LED RGB 5050 Endereçável 12 LEDs	Atração luminosa	Emissão de luz RGB programável em formato compacto para atratividade visual	Melhor controle e intensidade na atração	R\$ 19,00
Jumper Macho- Macho 20cm 20 fios	Conexões elétricas rápidas	Facilita prototipageme organização dos circuitos	Praticidade na montagem de circuitos	R\$ 7,78
Jumper Macho- Fêmea 20cm 20 fios	Conexões elétricas rápidas	Interliga sensores e módulos	Flexibilidade em conexões de diferentes tipos	R\$ 7,78

Componente	Função	Responsabilidades Técnicas	Destaque	Valor (R\$)
Resistor 5K ohms 1/4W	Resistência elétrica	Adequação de níveis de sinal e proteção de circuitos	Essencial para proteção dos componentes eletrônicos	R\$ 0,12 (par)
Conversor de Nível Lógico 5V para 3,3V	Compatibilização de tensões	Adaptação segura entre diferentes padrões de voltagem	Segurança e integridade nos sinais eletrônicos	R\$ 6,11
Google Colab Pro	Treinamento em nuvem	Treinamento do algoritmo de visão computacional sem infraestrutura local	Otimiza tempo e recursos computacionais	R\$ 58,00/mês
Tatame EVA 50×50cm	Base física da estrutura	Material de montagem da armadilha	Impermeável e leve	R\$ 17,09
Fita Auto Adesiva	Montagem modular	Fixação dos módulos físicos da estrutura	Facilita manutenção e transporte	R\$ 16,90
Câmera CSI para Raspberry Pi	Captura de imagem	Entrada de dados para o algoritmo de identificação visual	Essencial em versões com visão computacional	R\$ 50,00
Módulo Abaixador de Tensão Ajustável DC- DC (LM317)	Regulação de tensão variável para alimentar diferentes módulos com precisão	Versátil para múltiplos usos de alimentação	Controle preciso de alimentação para múltiplos módulos	R\$ 8,90
Módulo Abaixador de Tensão 3,3V DC-DC (AMS1117)	Conversão fixa de 5V para 3,3V, ideal para sensores e microcontroladores que exigem 3,3V	Estabilidade e proteção de circuito	Estabilidade de tensão e proteção de circuitos	R\$ 3,40
Impressão 3D	Estrutura física da armadilha	Impressão da carcaça e base de suporte	Estrutura personalizada e leve	R\$ 120,00

Versão 1 – Atração por Água e Feromônio + Reconhecimento por Som

Configuração de entrada, de baixo custo, com foco em atratividade biológica e identificação acústica. Ideal para validações iniciais e testes em bancada.

Componentes utilizados:

- ESP32
- 2× Coolers
- Sensor DHT11
- Microfone USB Hrebos HS-29
- Módulo Relé 2 Vias
- Amplificador (previsto)

Custo total estimado: R\$ 156,00

Versão 2 – Atração por Luz + Reconhecimento por Som

Utiliza estímulo visual para atrair o mosquito em ambientes escuros. Mantém os sensores acústicos e ambientais com controle via ESP32.

Componentes utilizados:

• ESP32

- 2× Coolers
- Sensor DHT11
- Microfone USB Hrebos HS-29
- Módulo Relé 2 Vias
- Anel de LED WS2812B
- Amplificador (previsto)
- Jumper Macho-Macho 20cm 20 fios
- Jumper Macho-Fêmea 20cm 20 fios
- Resistor 5K ohms 1/4W
- Conversor de Nível Lógico 5V para 3,3V
- Módulo Abaixador de Tensão 3,3V DC-DC (AMS1117)
- Módulo Abaixador de Tensão Ajustável DC-DC (LM317)
- Câmera CSI para Raspberry Pi
- Impressão 3D

Custo total estimado: R\$ 289,47

Versão Final – Reconhecimento Visual + Áudio + Atração Multimodal

Versão atual e completa do DengBuster, com processamento central via **Raspberry Pi**, identificação multimodal (imagem e som), atração por luz, ventilação ativa e base para validação científica em campo.

Componentes utilizados:

- Raspberry Pi 4
- Câmera CSI ou USB
- Microfone USB Hrebos HS-29
- Módulo LED RGB 5050 Endereçável 12 LEDs
- 2× Coolers
- Sensor DHT11
- Módulo Relé
- Amplificador
- Tatame EVA + fita de fixação
- Impressão 3D

Custo total estimado:

- Subtotal componentes: R\$ 1038,46

- Margem para cabos, conectores e reserva (10%): R\$ 93,85

- Total estimado: R\$ 1048,31

🗆 Ainda não incluso: estrutura física definitiva da carcaça, compartimentos, proteção contra chuva e acabamento estético.

Versão	Descrição	Data	Responsável
1.0	Criação do documento	24/04/2025	Breno Soares Fernandes e Breno Lucena Cordeiro
1.1	Padronização e incremento	01/05/2025	Miguel Moreira da Silva de Oliveira
2.0	Padronização e incremento	30/05/2025	Breno Luecna Cordeiro